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Abstract

Non-uniform plastic deformation of materials exhibits a strong size dependence when the material and deformation
length scales are of the same order at micro- and nano-metre levels. Recent progresses in testing equipment and com-
putational facilities enhancing further the study on material characterization at these levels confirmed the size effect phe-
nomenon. It has been shown that at this length scale, the material constitutive condition involves not only the state of
strain but also the strain gradient plasticity. In this study, C° axisymmetric element incorporating the mechanism-based
strain gradient plasticity is developed. Classical continuum plasticity approach taking into consideration Taylor dislo-
cation model is adopted. As the length scale and strain gradient affect only the constitutive relation, it is unnecessary to
introduce either additional model variables or higher order stress components. This results in the ease and convenience
in the implementation. Additional computational efforts and resources required of the proposed approach as compared
with conventional finite element analyses are minimal. Numerical results on indentation tests at micron and submicron
levels confirm the necessity of including the mechanism-based strain gradient plasticity with appropriate inherent mate-
rial length scale. It is also interesting to note that the material is hardened under Berkovich compared to conical ind-
enters when plastic strain gradient is considered but softened otherwise.
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Keywords: Constitutive relation; C° axisymmetric element; Simulated indentation test; Material length scale; Power law strain har-
dening; Strain gradient effect

* Corresponding author. Tel.: +65 68742173; fax: +65 67791635.
E-mail address: cvesomsa@nus.edu.sg (S. Swaddiwudhipong).

0020-7683/$ - see front matter © 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijsolstr.2005.05.026


mailto:cvesomsa@nus.edu.sg

1118 S. Swaddiwudhipong et al. | International Journal of Solids and Structures 43 (2006) 1117-1130
1. Introduction

The growing reliance on MEMS and NEMS and the improved capability of the indentation instrument
have inspired numerous researchers to conduct material characterization based on indentation tests at
micron and submicron levels. The rapid development in the field is also to exploit the significant gain in
strength at smaller size. Experiments carried out in the past few decades demonstrated the strong size effects
when the material length scale and the non-uniform plastic deformation are of the same order at micron or
submicron levels. Classical continuum mechanics ceases to be valid at this range of deformation.
Stelmashenko et al. (1993), Ma and Clarke (1995) and Nix (1997) have reported the strong size dependence
in the indentation tests of single and polycrystalline metallic materials when the depth of indentation was at
micron or submicron level. Similar phenomena have been observed by Fleck et al. (1994) in torsional experi-
ments on copper wires of micron diameters and by Stolken and Evans (1998) and Haque and Saif (2003) in
micro-bend tests.

Toupin (1962) and Mindlin (1965) have proposed a theory incorporating the strain gradients as addi-
tional parameters in describing the state of stress in constitutive condition of materials. Based on Taylor
(1934) dislocation model, Fleck and Hutchinson (1993) proposed a phenomenological theory of strain gra-
dient plasticity. The mechanism-based theory of strain gradient (MSG) plasticity was developed by Gao
et al. (1999) and Huang et al. (2000) through the mesoscale constitutive laws incorporating the micro-scale
plasticity based on Taylor dislocation model. Higher-order stress components and hence additional govern-
ing equations and boundary conditions are involved in the formulation process. These requirements im-
posed substantial complexities in the formulation and solution stages for both analytical work and
numerical implementation. Several researchers such as Xia and Hutchinson (1996), Shu and Fleck
(1998), Chen and Wang (2002a,b) and Chen and Yuan (2002) developed finite element procedures based
on the mechanism-based higher-order strain gradient plasticity and applied the method to study various
continuum problems at micron and sub-micron levels. As higher order stress components are included
in the formulation, the approach involves either more degrees of freedom and/or C' continuous shape func-
tions on top of additional governing equations and boundary conditions.

An alternative approach presented by Aifantis (1984) and Muhlhaus and Aifantis (1991) does not re-
quire the work conjugate of strain gradients. Acharya and Bassani (1996) proposed a constitutive relation
model incorporating gradient-type non-local measures for rate-independent plasticity. The strain gradient
effects are included in the constitutive equations through the instantaneous hardening moduli. Chen and
Wang (2000) and Chen et al. (2004) adopted C° finite elements with both translational and rotational nodal
displacements to simulate the thin wire torsion, micro-bend tests and micro-indentation with size effects
based on the balance laws in a non-local theory which are identical to classical local theories (Eringen,
1981 and 1983). Gao and Huang (2001) proposed a Taylor-based non-local theory of plasticity to study
void growth, cavitation instabilities, particle reinforced composites, micro-tension, micro-bending and
micro-indentation. The main feature of this approach is that the resulting boundary value problems remain
the same as in the conventional flow theories and no higher-order stress and stain are involved in the gov-
erning equations and boundary conditions.

Conventional theory of mechanism-based strain gradient (CMSG) was recently proposed by Huang et al.
(2004). The theory retains the contribution of strain gradients based on Taylor hardening theory without
involving the higher-order stress components. The effects of the strain gradients and material length scale
are felt only in the constitutive relation rendering additional governing equations and boundary conditions
irrelevant. The approach is much more appealing than the predecessors as only nodal displacement variables
are included in the finite element formulation. The same concept has been adopted by Swaddiwudhipong
et al. (2005a) to formulate and implement C° solid elements to study the bar under its own weight and
Berkovich indentation simulation at nano-meter level.
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2. Taylor dislocation model and constitutive relation

The constitutive relation incorporating Taylor dislocation model through the effective strain rate is
briefly described in this section. Mechanism-based strain gradient plasticity has been introduced and pro-
posed by several prominent researchers including Toupin (1962), Mindlin (1965), Fleck and Hutchinson
(1993), Gao et al. (1999) and Huang et al. (2000). The latter in his recent work (Huang et al., 2004) pre-
sented the conventional theory of mechanism-based strain gradient plasticity. These works form the bases
of the materials described in this section.

For small dislocation density, Taylor (1934) dislocation model can be simplified and expressed as
(Ashby, 1970)

= aub\/pr = auby\/ps + pg (1)

where 7 is the shear flow stress, b the magnitude of the Burgers vector, u the shear modulus and o an empir-
ical constant the value of which ranges from 0.2 to 0.5 depending on the material structures and character-
istics. The total dislocation density, pt, comprises the density of statistically stored dislocations (SSD), ps,
and the geometrically necessary dislocations (GND) density, pg. The former, ps, is trapped randomly and
can be determined from the uni-axial stress—strain law while the latter, pg, is introduced by Nye (1953) to
ensure the compatibility of the non-uniform plastic deformation.

pG =" /b )

The expression for the flow stress of Taylor dislocation model can be shown to be (Huang et al., 2004)

v = \loxf @) +MFebip = o /7@ T p o)

where ovyf(eP) represents the stress—plastic strain relation in uni-axial tension and M is the Taylor factor
relating the tensile yield strength to the critical resolved shear strength for crystalline materials. 4P is the
effective plastic strain gradient and / is the intrinsic material length scale in strain gradient plasticity intro-
duced by Fleck and Hutchinson (1993) and can be expressed as

2 2
I=7b (M ““) — 18b <ﬂ> )
Oy oy

for common values of M =3.06 and 7 = 1.90 as proposed by Bishop and Hill (1951) and Arsenlis and
Parks (1999) respectively. The values of the material length scale, /, are in the order of microns incorporat-
ing the combined effects of shear modulus y (elasticity), the yield stress oy (plasticity) and the magnitude of
Burgers vector b (dislocation).

The power law visco-plastic model (Hutchinson, 1976; Kok et al., 2002) incorporating the strain gradient
effects is expressed as

m

()

R 1 S
e [UJ ‘ Lyy/fz(sp) + Inpp

where & = /34, is the effective strain rate, m the rate-sensitivity exponent and & the deviatoric strain

rate. Huang et al. (2004) demonstrated that Eq. (5) is applicable to conventional power-law hardening if
m is large (m = 20).

The strain rate, &;, comprises the elastic and plastic components such that
1. Ok 3&P
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The elastic strain rate ef/ is obtained from the stress rate, ¢;;, via the linear elastic relation.

.e 1 Ok
Sij = 2 + 9_K 6,1 (7)
(';;j is the deviatoric stress rate, K the bulk modulus of elasticity and . = /30};0; / 2 is the von Mises effec-

tive stress. The deviatoric strain rate can be obtained from

. 1 L., 3
& = by — 3 = &0y = on -0y + 20 o (8)
where &, = % and J; is the Kronecker delta tensor.
The effective plastic strain gradient is given by Gao et al. (1999)

n° =\ / 2 9)

where ’7,,k =&y, t ey, — &6y = [&de and & is the plastic strain tensor. Details on the derivation are
provided in the next sectlon In view of Eq. (5) Eq. (8) becomes

1 3% (o 1 3 G "
g gl O R S VAL L S 10
o +2ac( ) 7= 20" 2, <ay fz(sp)+h1p) K o

The stress rate can thus be expressed as

3¢ g !
6i; = Koy + 2p| &, — i— | ————e—=x| o, 11
] kk Cij M & 20, (UY /fz(gp) 4 Z"lp) J‘| ( )
Eq. (11) as mentioned by Huang et al. (2004) describes the constitutive relation considering the strain gra-
dient effect without the presence of higher-order stress components. Conventional continuum mechanic
algorithms which are readily available can be employed with minor alterations and minimal additional
computational efforts and resources.

3. Effective strain gradient
3.1. Orthogonal curvilinear coordinate system

Though the effective strain gradient tensor, 1, derived in this section is based on the total strain and
deformation, the relations are applicable for expressions for effective plastic strain gradient, #P, required
of in Eq. (5) as the elastic component is usually small and can be ignored (Fleck and Hutchinson, 1997).
The strain gradient tensor of third-order, n, is defined as

n=VVu (12)

The displacement vector, u, is expressed as

u= Z uiéi (13)
where €; is the unit vector in i direction. The gradient, V, in orthogonal curvilinear coordinate system is
defined as

V()=Zéi;%(ai) (14)
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where o; is the orthogonal curvilinear coordinate in i direction and /; the corresponding Lamé coefficient.
The derivatives of unit base vectors can be shown to be
0e; 1 Oh; . 1 Oh;. O 1 0Oh;_

S _ L g & _ 1 15
aO(i hk aO(k G hj 60(, G 63(/ l’li @oc,« ¢ ( )

where i, j, k are unequal mutually. The strain gradient tensor in orthogonal curvilinear coordinate system
can thus be expressed as

.1 0 -
Zeih_j ach (Z ”i‘b‘)]
J i

1 [ Qw ___  Ou_ 0&_ Ou_ _ 08
+ ” <%éké-@ + u[ék% 08, + u;€.; T >
% hihe \Oo 7 Oy, Oo; 7 Dot Qo

hk a()(k hj @otj S hk a(xk hj Uik Jaij

ik
=al +a2+ a3+ a4+ a5+ a6+ a7+ a8 (16)
3.2. Cylindrical coordinates and axisymmetric element

The corresponding coordinates, unit vectors, their first and second derivatives and Lamé coefficients in
cylindrical coordinate system can be expressed respectively as

o =r, 062:9, Oy =Z (17)
él =€, éz = €y, é3 =€, (18)
Oeg 1 Ohy 1 0hy 1
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The following relations are valid for axisymmetric case:
Ou, Ou,
up=0 and 69_60_0 (23)

Considering Egs. (17)—(22), if axisymmetric conditions are imposed in Eq. (16) the eight components of
the strain gradient are further simplified to

al = Z ul'7jkejekei (24)

i.j.k=rz

1
a2 = ; Z U; 1€0€p€; (25)

i=rz



1122 S. Swaddiwudhipong et al. | International Journal of Solids and Structures 43 (2006) 1117-1130
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The strain gradient tensor for axisymmetric element, 1, can thus be expressed as

Nn=VVu=al+a2+a3+ad+a5+ab6+a7+a8

1 u,
= E U; j1€;€e; + » E (u; €0€0€; + U, €0€:€0 + U, €:€9€0) — = (ege €y + €geqe, + e.ep€p)

ijk=rz i=rz
The relations of strain gradient components are thus
”rrr = Upyr ”rrz = qu"V

nzzr = Uz ’/Izzz = uZ:ZZ
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The deviatoric strain gradient tensor is defined as

1
n;‘.ik =Mijk — 4 (5ik'7./'pp + 5/'“71'1717)
Hence the components of deviatoric strain gradient can be shown to be
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S. Swaddiwudhipong et al. | International Journal of Solids and Structures 43 (2006) 1117-1130 1123

, 3 1 31 1

Moo = ]/’;(99 = Z’/IGZG - Z (’/’zrr + r’zzz) = Z ;u",z - Z (ui‘,f’z + uZ,ZZ) (45)
1 1 1 1 1

rl;zz = 5 N — 5 (nzrr + 71200) = Euz‘zz - 5 <ur‘rz + ;ur,z> (46)

4. C° axisymmetric element for materials with stain gradient effects

Finite element analyses have been adopted to study complex elastic, elasto-plastic, visco-elastic and vis-
co-plastic problems. During the early part of the past decade, the method without strain gradient effects has
been used to simulate Berkovich and other pyramidal indentation tests such as those presented by Larsson
et al. (1996), Giannakopoulos and Larsson (1997) and Swaddiwudhipong et al. (2005b). Several researchers
notably Fleck, Hutchinson and their co-workers in the later part of the previous decade have developed
finite elements incorporating strain gradient plasticity effects based on higher-order continuum plasticity
theory. A few examples are those reported by Xia and Hutchinson (1996), Begley and Hutchinson
(1998), Shu and Fleck (1998), Shu et al. (1999) and Chen and Yuan (2002). Either C'-continuous shape
functions or additional degrees of freedom have to be adopted in their works. The formulation of finite ele-
ment equations and the imposition of boundary conditions are awkward and tedious. In this paper, C° axi-
symmetric element incorporating conventional mechanism-based strain gradient plasticity is formulated,
implemented and adopted in the study of simulated indentation tests. An eight-node isoparametric element
is adopted as an example demonstrating the formulation of governing finite element equations. Its counter-
part ignoring the strain gradient effects has been widely used and available in most commercial finite ele-
ment programs.

Let r, z and u, w be the coordinates and displacement components in the radial direction and along the
axisymmetric axis, respectively. They can be expressed through isoparametric concept for an eight-node
axisymmetric element as

8

r= ZNl-(g, hr, z= ZN,—(g,h)Z,- (47)

i=1 i=1
8

8
u:ZN,(g,h)u,, W:ZN,(g,h)Wl (48)
i=1 =1
where g and £ are the corresponding natural coordinates. The shape functions, N; (i = 1-8) are well known
and can be obtained in any finite element texts, e.g., Zienkiewicz and Taylor (1994). Coordinate transfor-
mation can be performed through Jacobian matrix and its inverse expressed as

o(r,2) F, Fp }
J= =|" " 49
a(g7h) |:Zag Z-,/’l ( )

1 _Olgh) Tg, g

1 _ _ N z
= - [h . (50)

The strain vector {¢} can be expressed as
ou u ow ou ow]"

{e} {ar ; aﬁar] Blto} S
[B]=[B1 B, --- Bs] (52)

{6} =[& 06 -~ &s] (53)
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N, 0
N,

Bl=| 7+ Y| {” } i—1-8 (54)
0 N, Wi
Ni,z Ni,r

Coordinate transformation can be carried out through Eq. (59).
[Niy Niz]=[Nig NiplJ™' (55)

The strain gradients can be obtained through the derivation of the strain vector shown in Egs. (51)—(54).

0%u 10u u 0w Pu  w]
=52 v or 72 oz ozor T o]~ EAY (56)
i Ni,rr 0
in:, — & 0
Bl =1|"" r (57)
O Ni,zr
L Ni.zr Ni.rr

The derivatives of strain vector with respect to z can be similarly derived. According to the chain rule,

@N,“, 6g aN,'J oh

Nirr: _:Nir r Nﬂrh«r 58
=g or ' oh o SNl (58)
Hence,

Nirr Nirz Ni.r Ni.r r z

RO R vl | el ®

Nizr Ni,zz Ni,zg Nll,zh h,r h,z

Eq. (59) can be expressed in compact form as

a(Ni,ra Ni,z) _ 6<Ni.r7 Ni,z) a(g7 h) a(Ni,i'7 Niiz)

= = J! 60
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Similarly,
Nige =Niglrg + Nigz, (61)
a(Ni,g7N[7h) _ a(Ni,gaNi,h) a(l",Z) — a(Nl,gaNl,h)J (62)
o(g,h) o(r,z)  0(g,h) o(r,z)
Note that
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It can be shown that
a(NiraNzlz) ,TG(NigaNih) —1
! z) _ , : 4
o) T ek (&9



S. Swaddiwudhipong et al. | International Journal of Solids and Structures 43 (2006) 1117-1130 1125

The strain and the strain gradient matrices have been derived based on the above concept and the expres-
sions implemented in the user subroutine of the finite element package ABAQUS (2002).

5. Numerical examples
5.1. Simulated indentation on nickel

Various finite element analyses have been carried out to simulate the indentation tests at submicron level
reported earlier. Both conventional elements and those incorporating mechanism-based strain gradient ef-
fects presented in this paper are employed to simulate the load—displacement relationship of Berkovich
indentation on electro-polished nickel conducted by Pethica et al. (1983). The material properties as
adopted earlier by Bhattacharya and Nix (1988) to simulate this test are employed in the study. They
are as follows: the Young’s modulus of elasticity, £ = 207 GPa, the yield strength, Y = 350 MPa, the power
law, n = 0.03 and the Poisson’s ratio, v = 0.33. The intrinsic material length scale for Nickel of 5 pm stip-
ulated by Wang et al. (2003) is adopted in the analyses.

The convergence study of axisymmetric element meshes with and without the effects of strain gradient
for the equivalent conical indentation with a half angle of 70.3° has been carried out. The indenter is ide-
alized as a rigid body in the finite element model while the target material (nickel) is modeled as a deform-
able body. Three different meshes employing 5736, 10,107 and 15,816 axisymmetric elements for the target
domain have been employed in the study. A typical finite element mesh for the latter is shown in Fig. 1. In
each mesh, a uniform fine mesh is adopted in the region of 2 X 2 um in the vicinity of the contact domain
where high stress concentration is expected. The size of each element in this region for the finest mesh is
20 x 20 nm with an aspect ratio of one. The element size is gradually increased further away from this re-
gion. The average aspect ratio of the elements is kept closed to one throughout the whole domain. Friction-
less contact is assumed in the present finite element simulation, as its effect is negligible for indenters with
half-angle larger than 60° as reported by Bucaille et al. (2003). The convergence of the results obtained from
the three meshes can be observed through the graph depicted in Fig. 2. Though the results from the coarser
mesh are observed to converge satisfactorily, the finest mesh has been adopted in other analyses.

t
T

S5

T
T T
T T
juis T T
1 I t

s
b IS aaauns

T

Fig. 1. Typical axisymmetric finite element mesh: (a) zoom-up of mesh near contact region and (b) mesh for target domain.
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Fig. 2. Results of mesh convergence studies.

A series of C° solid elements incorporating plastic strain gradient effects was proposed by Swaddiwudhi-
pong et al. (2005a). These solid elements are employed to simulate both Berkovich and equivalent conical
indentation tests. The solutions obtained and those based on axisymmetric finite element with and without
the strain gradient effects are depicted and compared with the experimental data reported by Pethica et al.
(1983) in Fig. 3.

The comparison of these results demonstrates clearly the hardening effects of materials subject to inden-
tation at micron and submicron levels. Numerical results obtained from the proposed finite element model
incorporating CMSG plasticity theory agree reasonably well with indentation test results. In contrast, con-
ventional finite element solutions deviate significantly from the test results conducted at submicron level.

16
o Experimental (Berkovich) o
141 CMSG Plasticity (Berkovich)
------- CMSG Plasticity (3D Cone) 24
—— CMSG Plasticity (2D Cone) o 1
121 - = =+ Classical Plasticity (Berkovich) o J
———- Classical Plasticity (2D Cone) o
~ 10
z
£
- 81
It
o
-
6
4
2
0 : ‘ ‘ - ‘
0 100 200 300 400 500 600

Depth of Indentation (nm)

Fig. 3. Comparison of numerical and experimental results.
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The numerical results obtained from the proposed axisymmetric finite element and those from solid ele-
ments are by and large identical.

It is interesting to note that the load—displacement curve of the Berkovich indenter lies below that of the
conical indenter when conventional plasticity theory is adopted whereas the reversed trend is observed if the
CMSG plasticity theory is included in the element formulation. This is despite the fact that the contact area
to indentation depth relationship for both Berkovich and conical indenters is identical. The apparent con-
tradiction of this observation is most likely due to the following phenomenon. In the conventional plasticity
model, high level of stress concentration is induced in the region in the vicinity of apex and the edges of the
Berkovich indenter initiating early localized yielding which reduces substantially the resistance to penetra-
tion of the indenter. For conical indenter, the localized yielding occurs early only at the tip of the indenter
and further yielding, if any, on its cyclical smooth surface much later. For elements incorporating CMSG
plasticity theory, the magnitude of plastic strain gradient in the region in the vicinity of the edges of the
Berkovich indenter is large resulting in local stiffening effect whereas the gradient is substantially lower
under the smooth surface of a conical indenter. It is observed that for nickel, the local material stiffening
due to the strain gradient effect along the edges of the Berkovich indenter is larger than the weakening due
to localized yielding due to stress concentration at the edges. Hence the force required by a Berkovich
indenter is larger than that of a conical indenter to penetrate at the same depth of the target material.
The phenomenon was also observed during the indentation tests conducted and reported earlier by
Chollacoop et al. (2003).

The hardness of the Nickel materials in the present study is assessed by dividing the indentation load
with the actual contact area taking into consideration the effect of sink-in and pile-up if any as suggested
by Nix and Gao (1998). The variation of the hardness with respect to the indentation depth is depicted in
Fig. 4. The hardness of the target materials is observed to increase significantly when the indentation depth
decreases steadily at sub-micron level. This observation is consistent with analytical and experimental find-
ings reported earlier by several researchers such as Nix and Gao (1998), Xu and Rowcliffe (2002) and Chen
et al. (2004). The deformed configurations of the Nickel materials under simulated Berkovich indentation
using both the classical plasticity and conventional mechanism-based strain gradient (CMSG) concept are
displayed in Fig. 5. Pile-up is observed in the former. The phenomenon agrees well with the statement stip-
ulated earlier by Xu and Rowcliffe (2002) that for materials with n < (.3, pile-up is expected when the ratio

5.0

454 ¢
4.0
3.5
3.0 1
2.5 ¢ o

2.0 1

Hardness (GPa)

1.5 1
1.0
0.5

0.0 T T T T T T T
0.0 50.0 100.0 150.0 200.0 250.0 300.0 350.0 400.0

Indentation Depth (nm)

Fig. 4. Variation of hardness with indentation depth.
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Ty

i i i

Fig. 5. Deformed shape of the mesh based on (a) classical plasticity model and (b) CMSG plasticity mode.

of the elastic recovered depth to the maximum penetration depth, /e/hya, < 0.12. The values of n for Nickel
and hg/hy., obtained in the present study are 0.03 and 0.0297 respectively and hence it is not surprising that
pile-up is observed. However, when the plastic strain gradient effect is included, a mild sink-in is noticed.
This latter phenomenon is most likely attributed to the hardening of materials in the vicinity of the contact
region where the effect of strain gradient plasticity is prominent.

6. Conclusions

(° axisymmetric finite element for materials with plastic strain gradient effects has been proposed in the
present study. Conventional mechanism-based strain gradient plasticity is incorporated through the intrin-
sic material length scale. As only the constitutive condition is affected, higher order stress and hence higher
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order continuity requirements and/or additional nodal parameters with mixed formulation are no longer
necessary. The proposed axisymmetric element has been adopted in the simulation of the Berkovich inden-
tation on an electro-polished nickel. Comparison of the results with those obtained from indentation tests
demonstrates clearly that indentation at submicron level can only be simulated reasonably accurately only
when the effects of plastic strain gradient are included in the formulation of these finite elements. Numerical
example also shows that though Berkovich and equivalent conical indenters with the same depth to area
relation are adopted, significant deviation on load-indentation curves is observed. It is noted that when
the effect of plastic strain gradient is included in the analysis, the material is hardened under Berkovich in-
denter due to higher strain gradient as compared to conical tip. The phenomenon was earlier obtained by
Chollacoop et al. (2003) in their indentation tests.
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